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János G Ángyán1, Iann Gerber1 and Martijn Marsman2

1 Laboratoire de Cristallographie et de Modélisation des Matériaux Minéraux et Biologiques,
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Abstract
Spherical harmonic expansions of the screened Coulomb interaction kernel
involving the complementary error function are required in various problems
in atomic, molecular and solid state physics, like for the evaluation of Ewald-
type lattice sums or for range-separated hybrid density functionals. A general
analytical expression is derived for the kernel, which is non-separable in
the radial variables. With the help of series expansions a separable approximate
form is proposed, which is in close analogy with the conventional multipole
expansion of the Coulomb kernel in spherical harmonics. The convergence
behaviour of these expansions is studied and illustrated by the electrostatic
potential of an elementary charge distribution formed by products of Slater-
type atomic orbitals.

PACS numbers: 31.15.−p, 71.15.−m

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Coulomb problem is at the heart of electronic structure calculations of molecules and
solids. The classical electrostatic energy, due to the interaction of the electronic and nuclear
charge distributions (Hartree and nuclear attraction), is one of the major components of the
total energy. Furthermore, electrostatic repulsion of electrons is responsible for the electron
correlation, which remains a major challenge for electronic structure theories. In both types
of problems one is faced with conceptual and numerical difficulties raised by the handling of
Coulomb interactions (CI).

The principal source of difficulties in the treatment of Coulomb interactions is the very
nature of the 1/r function, which is singular at r = 0 and has a slow rate of decay at large
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r, leading to convergence problems in both limits. A general strategy to handle this problem
consists of splitting the 1/r function into a long- and a short-range components. The short-
range component decays rapidly with increasing r, but it has a singularity at r = 0. The
Fourier transform of the long-range component decays rapidly in reciprocal space, but it has
a singularity at k = 0 (i.e. r → ∞). An explicit separation of these two domains offers the
possibility of treating both singularities separately, each with the most appropriate tool.

The archetypal example of this strategy is the Ewald technique to calculate Coulomb
lattice sums. The conditionally convergent Coulomb lattice sum is replaced by the sum of
two absolutely convergent sums of modified Coulomb interactions: one in the direct, the other
in the reciprocal space (Ewald 1921, De Leeuw et al 1980a, 1980b, Toukmaji and Board
1996). The optimal decomposition of the Coulomb operator, T (a) = 1/a, would be the one
that ensures the fastest decay rate of the two components in direct and in reciprocal spaces,
respectively. Gill and his co-workers showed that the Ewald decomposition, i.e.

T (a) = Sµ(a) + Lµ(a) = erfc(µa)

a
+

erf(µa)

a
, (1)

widely used to accelerate the computation of electron interactions in extended systems
(Dombroski et al 1996, Adamson et al 1996, Gill and Adamson 1996, Gill 1997, Lee 1998,
Hetzer et al 2000), is very close to the optimal one in the above sense (Lee et al 1997).
Here Sµ(a) and Lµ(a) stand for the short- and long-range components of the interaction,
respectively. Numerous variants of the Ewald technique have been applied to accelerate the
computation of the potential energy term in various electronic structure methods.

Another application of the split Coulomb operator consists in separating the treatment
of short- and long-range correlations in the electronic Hamiltonian (Panas 1995, Patkowski
et al 2001), in particular in the context of density functional theory (DFT). For instance in
the DFT-CI method of Savin (Stoll and Savin 1985, Savin 1996, Toulouse et al 2004) as
well as in similar approaches (Ángyán et al 2005, Gerber and Ángyán 2005a, 2005b, Goll
et al 2005, Sato et al 2005, Tawada et al 2004, Yanai et al 2004, Kamiya et al 2002), it is
supposed that the short-range electron correlation is essentially correctly described with local
or semi-local density functionals, while the remaining long-range correlation effects can be
efficiently treated by wavefunction methods. A somewhat different philosophy is followed in
the case of screened Coulomb hybrid functional (HSE03) which is designed to circumvent the
convergence problems in the Fock exchange component of hybrid functionals in solids. Here,
the long-range part of the Fock exchange is replaced by an appropriately tailored long-range-
only density functional (Heyd et al 2003, Heyd and Scuseria 2004), while the short-range
component is calculated explicitly.

The computational implementation of the modified, short- and/or long-range electron
interaction integrals is relatively easy in Gaussian basis sets (Panas 1995, Gill and Adamson
1996, Savin 1996), and requires only minor modifications in existing Gaussian-based quantum
chemical codes. There is no problem for plane waves either, since the screened interaction
function has a simple Fourier transform (Paier et al 2006).

However, there are many successful electronic structure codes that do not use Gaussian
or plane wave basis functions. The basis set can be constituted of numerical (Velde et al
2001, Soler et al 2002) exponential (Delley 1990) or Bessel-type (Furthmüller et al 1994,
Kresse and Joubert 1999, Blöchl et al 2004, Blaha et al 1999) radial functions, augmented by
spherical harmonic angular components. In all these cases, the treatment of the electrostatic
interactions can take advantage of the spherical harmonic decomposition of the Coulomb
kernel. The interaction between two point charges situated at the points R and r, expressed in
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spherical polar coordinates {r, θ, φ} and {R,�,�}, respectively, is described by the Coulomb
kernel

T (R, r, γ ) = 1

(R2 + r2 − 2Rr cos γ )1/2
, (2)

where γ is the angle between R and r. The corresponding Legendre expansion is

T (R, r, γ ) =
∞∑
l=0

Gl(R, r)Pl(cos γ ). (3)

Pl(x) is the Legendre polynomial of order l, and the radial function Gl (R, r) is defined as

Gl (R, r) = rl
<

Rl+1
>

, (4)

where r< (R>) is the smaller (greater) of r and R. In order to obtain a fully separable expression,
the addition theorem for spherical harmonics, Ylm(θ, φ) = Ylm(ω), can be used to write

T (R, r) =
∞∑
l=0

Gl (R, r)

(
4π

2l + 1

) l∑
m=−l

Y ∗
lm(�)Ylm(ω) =

∞∑
l=0

l∑
m=−l

I∗
lm(R)Rlm(r), (5)

where the regular, Rlm(r), and irregular, Ilm(r), spherical harmonics are defined as

Rlm(r) = rl

√
4π

2l + 1
Ylm(ω), Ilm(r) = r−l−1

√
4π

2l + 1
Ylm(ω). (6)

The final expression is the product of two functions, each depending exclusively either on r
or on R, making it possible to perform integrations over R and r separately.

In the present paper we address the question whether it is possible to obtain an analogous
series expansion of the short-range screened interaction kernel,

Sµ(R, r, γ ) = erfc(µ(R2 + r2 − 2Rr cos γ )1/2)

(R2 + r2 − 2Rr cos γ )1/2
. (7)

To answer this question we first seek a Legendre expansion

Sµ(R, r, γ ) =
∞∑
l=0

Fl(R, r, µ)Pl(cos γ ), (8)

where Fl(R, r, µ) is the short-range generalization of the Coulomb radial function, Gl(R, r).
Secondly, we will examine whether a further series expansion may bring it in a fully separable
form, analogous to equation (5).

The question whether a Legendre expansion of the short-range screened interaction kernel
does in fact exist need not concern us here; a general analytical expression for the Legendre
expansion of the short-range (erfc) interaction has already been derived by Marshall (2002), by
applying the Gegenbauer addition theorem to the Laplace transform of the screened interaction
operator. Following the main lines of Marshall’s procedure and using the facilities of the
Mathematica program (Wolfram 2005), we have found an alternative expression for the radial
functions of different orders, which could be further developed in a separable form, analogous
to the spherical harmonic multipole expansion of the full Coulomb interaction.

In contrast to previous works on the series expansion of screened Coulomb interactions,
which relied exclusively on Cartesian multipole components, the originality of our method
resides in the consistent use of spherical harmonic functions. For instance, Gill (1997) showed
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that the non-singular long-range (erf) interaction function can be expanded in the convergent
Taylor series

Lµ(R, r, γ ) =
∞∑
l=0

2µ2l+1

√
π

(−1)l

(2l + 1)l
(R2 + r2 − 2Rr cos γ )l, (9)

which can be written in terms of the Cartesian components of the vectors r = {x, y, z} and
R = {X, Y,Z}. Hetzer et al (2000) found that the numerical stability of such an expansion
can be improved if the analytical Taylor expansion coefficients are replaced by optimized
ones, obtained by a least-squares fitting procedure. These authors underlined correctly the
importance of using an expansion in terms of a reducible set of traced Cartesian moments.
In effect, the prerequisite for using an irreducible multipole expansion is that the interaction
kernel should satisfy the Laplace equation, which is the case for the full Coulomb interaction,
∇2(1/r) = 0. The screened Coulomb kernel does not satisfy the Laplace equation; therefore,
the use of traced Cartesian moments seems to be mandatory. However, this does not exclude
the use of a spherical harmonic formulation of the angular part of the interaction, as will be
demonstrated in the present work. Doing so, we gain the considerable advantage of exploiting
directly the orthogonality of spherical harmonics.

This paper is organized as follows. The derivation of the Legendre expansion of the
short-range (erfc) interaction function is outlined in section 2, followed by a discussion of the
explicit analytical expressions for the corresponding radial functions of different orders. A
separable form of the radial function Fl(R, r, µ) is obtained by a Taylor expansion of the radial
functions. In section 3 the behaviour of the radial function and its approximations is discussed
in more detail. As an example, the details of the calculation of the screened electrostatic
potential are treated in section 4. The possibility of particular physical applications is outlined
in section 5, and we conclude in section 6, which summarizes the main results of the present
work.

2. Theory

2.1. Legendre expansion of the short-range interaction

While the derivation of the Legendre expansion of the Coulomb operator, based on the
application of the cosine rule and on the form of the generator function of the Legendre
polynomials, is a standard textbook material (Jackson 1975), the analogous problem involving
a short-range interaction function is much less obvious to solve. The approach followed by
Marshall (2002) consists in taking the Laplace transform of the interaction kernel as

St (a) = erfc(a/2
√

t)

a
, L[St (a)] = e−a

√
s

sa
, (10)

where the range separation parameter is defined as t = 1/4µ2. Provided that cos γ �= 1, the
Laplace transform can be expanded by the virtue of Gegenbauer’s addition theorem (Watson
1944) in terms of Bessel functions, in(z), kn(z), and Legendre polynomials, Pn(cos γ ), as

L[St (R, r, γ )] = exp(−√
s(R2 + r2 − 2Rr cos γ )1/2)

s(R2 + r2 − 2Rr cos γ )1/2

= 2

π

∞∑
n=0

(2n + 1)
in(r

√
s)kn(R

√
s)√

s
Pn(cos γ ). (11)
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The Bessel functions in(z) and kn(z) are defined explicitly as

kn(z) = π

2z
e−z

n∑
p=0

(n + p)!

p!(n − p)!(2z)p
(12)

in(z) = 1

2z

ez

n∑
p=0

(−1)p(n + p)!

p!(n − p)!(2z)p
+ (−1)n+1 e−z

n∑
p=0

(n + p)!

p!(n − p)!(2z)p

 . (13)

The inverse Laplace transform of the series expansion, equation (11), gives the short-range
interaction function in the desired form

St (R, r, γ ) =
∞∑

n=0

Fn(R, r; t)Pn(cos γ ), (14)

where the nth-order radial function is defined by the inverse Laplace transform

Fn(R, r; t) = 2(2n + 1)

π
L−1

[
in(r<

√
s)kn(R>

√
s)√

s

]
. (15)

As stressed by Marshall (2002), the necessary condition for the existence of the inverse Laplace
transform is that equation (11) tends to zero with increasing s. In order to satisfy this condition
it is required that the argument of the Bessel function kn be greater than that of the Bessel
function in, i.e. R > r , otherwise the two arguments should be interchanged, analogously to the
convention used in the definition of the full Coulomb radial function, Gn(R, r), in equation (4).
The details of the calculation of the radial function associated with the screened Coulomb
interaction are to be discussed in the following subsection.

2.2. Short-range radial function

In order to simplify the analysis of its behaviour, the radial function, Fn(R, r;µ), will be
expressed in terms of the scaled variables, 	 = µR and ξ = µr , as

Fn(R, r;µ) = µ�n(	, ξ), (16)

where �n(	, ξ) is the scaled radial function. Note that the full Coulomb radial function,
equation (4), obeys a similar scaling relationship

Gn(R, r) = µGn(	, ξ). (17)

By solving equation (15) explicitly, Marshall (2002) has derived three different closed
expressions for the inverse Laplace transform. We have tested these analytical expressions
against the numerical evaluation of the inverse Laplace transform integral, but were not able
to confirm the validity of either the first or the third analytical evaluations, which used the
incomplete and Euler gamma functions on the one hand and the error function integral,
erfci, on the other. However, we succeeded in verifying numerically the second analytic
evaluation, given by equation (A.27) of Marshall’s paper, which was obtained by calculating
the intermediary integral

Fn(R, r; t) = (2n + 1)

∫ t

0
dτ

e−(R2+r2)/4τ

2
√

πτ 3
in

(
rR

2τ

)
. (18)

A transcription Marshall’s result in our previously introduced scaled variables leads to the
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expression

�n(	, ξ) = (2n + 1)

(
1√

2π	ξ

n∑
p=0

(−1)p(n + p)!

p!(n − p)!2p+1

(
1

2	ξ

)p+1/2

Ep+3/2((	 − ξ)2)

+
(−1)n+1

√
2π	ξ

n∑
p=0

(n + p)!

p!(n − p)!2p+1

(
1

2	ξ

)p+1/2

Ep+3/2((	 + ξ)2)

)
, (19)

where En(z) = ∫ ∞
1 e−zt /tn dt is the exponential integral function of order n. This formula is

symmetric in the variables 	 and ξ , but indeterminate for 	 = ξ .
In the present work we followed a strategy, which consists in performing an order by order

determination of the inverse Laplace transform using the Mathematica package (Wolfram
2005), employing the explicit forms of the modified Bessel functions, in(z) and kn(z), given
by equations (12) and (13). For instance, at the zeroth order we obtain

L−1

[
(e−(R−r)

√
s − e−(R+r)

√
s)π

4Rrs3/2

]
= 1

2
√

πξ	
{(e−(	−ξ)2 − e−(	+ξ)2

)

+
√

π((	 + ξ) erfc(	 + ξ) − (	 − ξ) erfc(	 − ξ))}. (20)

Analogous expressions are obtained for higher orders, containing an exponential and a
complementary error function contribution.

After rearrangement of the lowest order results the following general expression can be
established for the nth-order radial function:

�n(	, ξ) = Fn(	, ξ) +
n∑

m=1

Fn−m(	, ξ)
	2m + ξ 2m

(ξ	)m
+ Hn(	, ξ), (21)

where Fn(	, ξ) and Hn(	, ξ) are auxiliary functions. Fn(	, ξ) is symmetric with respect to
the interchange of the two variables, i.e. Fn(	, ξ) = Fn(ξ,	), and it is defined as

Fn(	, ξ) = 2√
π

n∑
p=1

( −1

4	ξ

)p+1
(n + p)!

p!(n − p)!
((−1)n−p e−(ξ+	)2 − e−(ξ−	)2

). (22)

Note that Fn(	, ξ) can also be expressed with the help of the modified Bessel functions of the
second kind, Kn(z), as

Fn(	, ξ) = e−(ξ 2+	2)

π
√

ξ	
(ıK−1/2−n(−2ξ	) − (−1)nK−1/2−n(2ξ	)). (23)

The auxiliary function Hn(	, ξ) is defined in terms of the complementary error function as

Hn(	, ξ) = 1

2(ξ	)n+1
((	2n+1 + ξ 2n+1) erfc(	 + ξ) − (	2n+1 − ξ 2n+1) erfc(	 − ξ)). (24)

Hn(	, ξ) is not symmetric with respect to the interchange of the variables and it is supposed
that 	 � ξ .

Explicit expressions for the lowest order radial functions in terms of reduced variables
are given in the appendix. Only simple exponential and complementary error functions are
needed to evaluate the radial function, �n(	, ξ).

Special care should be devoted to the handling of very small arguments where, due to
numerical instabilities, �n(	, ξ) may show a strongly oscillatory behaviour. This can be
avoided by the use of a series expansion of the auxiliary function, Fn(	, ξ), and of the
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complementary error function. We use a smooth representation of the complementary error
function erfc(x) for x < 10−4 by the power series

erfc(x) ≈ 1 − 2x√
π

+
2x3

3
√

π
− x5

√
5π

. (25)

At small values of ξ strong oscillations can be observed in the auxiliary function, Fn(	, ξ),
which can be attributed mainly to the numerical instabilities in the evaluation of the sum of
Bessel functions. One possibility of avoiding this inconvenience consists in expanding the
Bessel function sum in power series in the variable ξ	 up to order (n + 2):

1

π
√

ξ	

(
ıK−1/2−n(−2ξ	) − (−1)nK−1/2−n(2ξ	)

)
≈ 2n+1(3 + 2n + 2ξ 2	2)ξn	n

√
π(2n + 3)!

+ On+4(ξ	). (26)

An empirically established criterion for the use of the above power series is (ξ	)2n+1 � 10−6.
Another, perhaps safer solution is to replace �n(	, ξ) by its power series, as detailed in the
following subsection.

2.3. Series expansion of the radial function for 	 � ξ

The general expression for the nth-order radial function, as Fn(R, r;µ) = µ�n(	, ξ), offers
the possibility of exploiting the orthogonality of the spherical harmonic angular functions, but
it is not separable in the vector variables R and r. In order to arrive at a separable expression
we proceed by a power series expansion of the radial function �n(	, ξ) in the smaller reduced
variable, ξ .

As an example, let us take the series expansion of the zeroth-order radial function,
�0(	, ξ), cf equation (A.1):

�0(	, ξ) = erfc(	)

	
+

2 e−	2

3
√

π
ξ 2 +

(2	2 − 3) e−	2

15
√

π
ξ 4 + · · · . (27)

The first contribution is a screened analogue of the 1/R potential of the charge, i.e. the zeroth-
order multipole moment. While in the Coulomb case this would be the only contribution, for
the screened short-range interaction we have further contributions, proportional to the higher
order spherically symmetric moment functions, r2, r4, etc. The long-range decay of these
latter terms is essentially of Gaussian shape in the 	 variable.

This behaviour proves to be general for the higher order radial functions as well. One
has a first contribution, proportional to ξn, decaying roughly as erfc(	)/	n + e−	2

, followed
by a series of contributions with Gaussian decay, proportional to ξn+2k . Introducing the
	-dependent damping functions, Dn,k(	), associated with terms of order n + 2k in the
variable ξ ,

Dn,0(	) = erfc(	) +
e−	2

√
π

2n+1	2n+1
n∑

m=1

2−m	−2m

(2n − 2m + 1)!!
(k = 0) (28)

Dn,k(	) = e−	2

√
π

2n+1(2n + 1)	2n+1

k!(2n + 2k + 1)

k∑
m=1

(
m − k − 1

m − 1

)
2k−m	2(k−m)

(2n + 2k − 2m + 1)!!
(k � 1),

(29)
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(a) (b)

(c) (d )

Figure 1. Damping functions of different orders, Dn,0(	), Dn,1(	) and Dn,2(	). Although
higher order damping functions, Dn,k(	), are almost invisible on this scale, their contribution may
be non-negligible once they are multiplied by ξ2k .

the short-range radial interaction function can be written in a separable form using the scaled
variables ξ and 	 as

�n(	, ξ) =
∞∑

k=0

Dn,k(	)

	n+1
ξn+2k. (30)

An insight into the shape of the screening factors of different orders is offered by
figure 1. Note the dominating role of the Dn,0(	) term. The first-order correction, Dn,1(	),
contributes mostly at a distance which shifts to larger and larger values with increasing n. The
second-order correction, Dn,2(	), is negative first, acting against the first-order contribution,
and becomes positive later.

Substitution of the power series expansion of �n(	, ξ) and using the spherical harmonics
addition theorem leads to the following separable expansion of the short-range interaction
function:

Sµ(R, r) =
∞∑
l=0

∞∑
k=0

µ2k Dl,k(µR)

Rl+1
rl+2k

(
4π

2l + 1

) l∑
m=−l

Y ∗
lm(�)Ylm(ω)

=
∞∑
l=0

l∑
m=−l

∞∑
k=0

µ2kDl,k(µR)I∗
lm(R)Rlm(r)r2k. (31)

Alternatively, it is possible to regroup terms according to the powers of r, leading to the
following expansion:

Sµ(R, r) =
∞∑

p=0

[p/2]∑
k=0

p−2k∑
m=2k−p

µ2kDp−2k,k(µR)I∗
p−2k,m(R)rpCp−2k,m(ω), (32)
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where the notation [m] stands for the largest integer less than or equal to m and Cl,m(ω) =
(4π/(2l + 1))1/2Ylm(ω) is a modified spherical harmonic. This latter form of the expansion,
equivalent to equation (31), shows that the screened Coulomb interaction needs to be expanded
in terms of the full ‘traced’ multipole moments. For instance, in the case of p = 2, for k = 0
we have the five components of the irreducible spherical harmonic components of rank 2,
while for k = 1 a further component, r2C0,0(ω), appears, which is equivalent to the trace of
the Cartesian quadrupole (second) moment. In the case of octupole contributions (p = 3), the
seven irreducible spherical components are supplemented by three terms arising from k = 1
of the form r2C1,m(ω).

Even if the present expansion contains the same kind of traced multipolar contributions
as one would obtain by a direct Taylor expansion of the screened interaction function, the
convergence properties of the two series are not necessarily the same. The relatively poor
performance of the analytical Taylor expansion of the long-range interaction function has
already been demonstrated by Hetzer et al, who showed that for µ = 0.15 the analytical
Taylor expansion of Lµ(r) = T (r) − Sµ(r) starts to diverge at about r = 15 au. The long-
range interaction function obtained from the present expansion shows no divergence at all.
This can be easily understood, since, unlike the direct Taylor expansion of the long-range
interaction, equation (9), our formulation leaves the error function intact, without developing
it in a Taylor series which is at the origin of the divergence at larger distances.

Note that for (traceless) point multipole distributions only irreducible multipole
components are needed. In the context of multipole lattice summations with the Ewald method,
Cummins et al (1976) published such interaction tensors in a traceless Cartesian formulation
up to order 4 (field of octupole moments), as partial derivatives of the zeroth-order interaction
function, erfc(	)/	.

3. Numerical studies of the radial interaction function

In the limit of vanishingly small range separation parameter, i.e. for µ → 0, the short-range
interaction function becomes identical to the usual Coulomb interaction and one has the
physically expected limiting behaviour

lim
µ→0

�n(	, ξ) = Gn(R, r). (33)

It means that for very small values of µ the reach of the short-range interaction is very large,
i.e. the short-range interaction coincides with the normal Coulomb interaction.

The radial interaction functions of a given order, �n(	, ξ), are two-variable quantities.
In order to obtain quantitative insight into their shape, the following presents a series of
representative cross-sections for the n-order radial functions, �n(	, ξ). For the sake of
comparison the full Coulomb interaction functions, Gn(	, ξ), are shown, as well as the
k-order series expansions, �̃n,k(	, ξ), defined as

�̃n,k(	, ξ) =
k∑

j=0

Dn,j (	)

	n+1
ξn+2j . (34)

3.1. Range of validity

The range of validity of the series expansion for different orders can be estimated from the plot
of �n(ξ, ξ) and the expanded forms, �̃n,k(ξ, ξ), as illustrated in figure 2. At higher orders
and at small values of ξ the diagonal value of the radial function is almost identical with
that of Gn(ξ, ξ). While the expanded short-range radial functions tend to zero too quickly,
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(a) (b)

(c) (d )

Figure 2. Radial interaction function of different orders at 	 = ξ . The series expansion seems to
be valid up to ξ ≈ 1.5/2.0, depending on the order of the function.

the non-expanded form has a relatively long tail. The series expansion is correct roughly for
ξ < 1.5. Higher order series expansions (k > 2) may lead to oscillations, as it is illustrated in
figures 2(c) and (d).

3.2. Comparison of different orders

Cross-sections of the two-dimensional radial interaction functions of low order are plotted in
figure 3 for a fixed value of 	 = 2.5. In contrast to the full Coulomb interaction where the
zeroth-order function is constant (G0(	, ξ) = 1/	 for 0 � ξ � 	), the screened Coulomb
interaction function grows roughly exponentially up to ξ = 	. For the relatively high value of
	 = 2.5, the screened and full interaction functions are quite different over the whole range
of the scaled variable ξ . Note that this difference between Gn(	, ξ) and �n(	, ξ) persists
for all but very small values of 	 in the case of n = 0, but tends to become small for n > 1
up to relatively high values (about 0.5) of 	. It implies that for 	 < 0.5 and n > 1, the
screened interaction function can be replaced approximately by the full Coulomb interaction
in the range of around 0 < ξ < 2	.

The series expansion of the screened interaction works better for the higher order radial
interaction functions, but it is still not precise enough for the third-order radial function, as it
can be seen from figure 3(d).

3.3. Comparison of the radial function for short-range and ordinary Coulomb interactions

Several cross-sections of the radial function of order 2 are illustrated in figure 4. At small
values of 	 the usual Coulomb, short-range and expanded forms are undistinguishable. For the
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(a) (b)

(c) (d )

Figure 3. Radial interaction functions of different orders. All examples are presented for 	 = 2.5.

(a) (b)

(c) (d )

Figure 4. Comparison of radial functions of second order with normalized variables for the full
Coulomb interaction G2(	, ξ) (broken line), for the short-range interaction in its complete form
�2(	, ξ) (full line) and in its expanded forms �̃2,0(	, ξ) (dashed-dotted-line) and �̃2,0(	, ξ)

(dotted line). (a)–(d) correspond to different choices of the variable 	 = 0.25, 0.75, 1.5 and 3.0.
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intermediate value of 	 = 0.75 the large-ξ tail of the short-range function is slightly smaller
than the full Coulomb function, but the expanded and non-expanded short-range functions are
undistinguishable. At larger values of 	 the non-expanded radial function must be used, since
the expanded form is inexact.

In conclusion, a few practical rules can be established concerning the range of validity
of the expanded forms of the screened short-range interaction. It turns out that for ξ < 0.4
the series expansion, �̃n,k(	, ξ), truncated at relatively low order (k = 2) can safely replace
the full radial interaction function. Moreover, the use of the series expansion allows us to
avoid numerical instabilities which may occur in this region. If both variables are below 0.5,
or more precisely 0 < ξ < 2	 for 	 < 0.5, the radial function associated with the screened
interaction is very close to that of the full interaction. The convergence of the power series
deteriorates for larger values of 	.

4. Potential of a charge distribution

In various applications concerning the electronic structure of molecules and solids, the
treatment of Coulomb interactions involves the calculation of the electrostatic potential of
a product of exponential basis functions, like

〈n1, l1,m1, ζ1|V̂ sr,µ(R,�,�)|n2, l2,m2, ζ2〉, (35)

where the |n, l,m, ζ 〉 stands for a Slater-type atomic orbital,

χnlm(r, θ, φ) = (2ζ )n+1/2

√
(2n)!

rn−1 e−ζ rYl,m(θ, φ), (36)

and 〈n, l,m, ζ | means its complex conjugate. The screened electrostatic potential operator
can be expanded in spherical harmonics as

V̂ sr,µ(R,�) =
∫ ∞

0
dr r2

∫
dω ρ̂(r, ω)

∑
l=0

l∑
m=−l

4π

2l + 1
Fl(R, r, µ)(−1)mYl,−m(ω)Yl,m(�),

(37)

where ρ̂(r, ω) stands for the charge density operator in spherical coordinates, {r, θ, φ} = {r, ω}.
Using the product theorem of spherical harmonics, the charge density associated with the
product of two orbitals can be expanded as

〈n1, l1,m1, ζ1|ρ̂(r, θ, φ)|n2, l2,m2, ζ2〉

= σ(n1, ζ1, n2, ζ2, r)

l1+l2∑
L=|l1−l2|

L∑
M=−L

C
m1m2M
l1l2L

Y ∗
L,M(θ, φ), (38)

where the radial density function is

σ(n1, ζ1, n2, ζ2, r) = (2ζ1)
n1+1/2(2ζ2)

n2+1/2

√
(2n1)!(2n2)!

rn1+n2−2 e−(ζ1+ζ2)r , (39)

and the mixing coefficients can be given in terms of the Wigner 3j -symbols as

C
m1m2M
l1l2L

= (−1)m1

√
(2l1 + 1)(2l2 + 1)(2L + 1)

4π

(
l1 l2 L

m1 m2 M

)
3j

(
l1 l2 L

0 0 0

)
3j

. (40)

Combining these expressions and using the orthogonality of the spherical harmonics one
obtains the screened short-range potential as

〈n1, l1,m1, ζ1|V̂ sr,µ(R,�,�)|n2, l2,m2, ζ2〉

=
l1+l2∑

L=|l1−l2|

4π

2L + 1
W

sr,µ

L (n1, ζ1, n2, ζ2, R)

L∑
M=−L

C
m1m2M
l1l2L

Y ∗
L,M(�,�). (41)
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(a) (b)

(c) (d )

Figure 5. Short-range radial integrals for Slater functions, as described in the text.

The short-range radial integral of order L is defined as W
sr,µ

L (n1, ζ1, n2, ζ2, R) with

W
sr,µ

L (n1, ζ1, n2, ζ2, R) = µ

{ ∫ R

0
dr r2σ(n1, ζ1, n2, ζ2, r)�L(µR,µr)

+
∫ ∞

R

dr r2σ(n1, ζ1, n2, ζ2, r)�L(µr, µR)

}
, (42)

where we have used the scaling relationship between FL(R, r, µ) and �(	, ξ). This
expression can be used to calculate the screened electrostatic potential over the whole range
of distances.

For R > r , the short-range radial interaction function �(	, ξ) can be replaced by its
series expansion, leading to somewhat simpler integrals

W̃
sr,µ

L,k (n1, ζ1, n2, ζ2, R) =
k∑

j=0

µ2j

{
DL,j (µR)R−(L+1)

∫ R

0
dr r2σ(n1, ζ1, n2, ζ2, r)r

L+2j

+ RL+2j

∫ ∞

R

dr r2σ(n1, ζ1, n2, ζ2, r)DL,j (µr)r−(L+1)

}
. (43)

The behaviour of the radial integrals has been studied for the simple case of radial densities
obtained from the product of Slater functions of the form σn(r) = σ(n, n, n, n, r), i.e. the
exponents were taken to be equal to the principal quantum number. All of these radial functions
have their maxima at r = 1.0.

Figure 5 shows the radial integrals, W
sr,µ

L (n, R) for µ = 0.5, where n characterizes the
order of the radial component, σn(r), of the Slater function. It can be seen that the convergence
of equation (43) with respect to k is slower for low principal quantum numbers and low values
of L.
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Table 1. Radial integrals of Slater-type orbitals, W̃
sr,0.5
L (n,R = 2.0), as described in the text.

L n k = 0 k = 2 k = 4 k = 6 k = ∞
0 1 0.067 5648 0.094 338 0.094 173 0.094 165 0.094 165
0 2 0.075 2444 0.100 893 0.100 815 0.100 808 0.100 808
2 2 0.161 0200 0.169 164 0.169 417 0.169 419 0.169 419
0 3 0.077 4035 0.101 329 0.101 288 0.101 284 0.101 284
2 3 0.152 4000 0.158 921 0.159 100 0.159 102 0.159 102
4 3 0.092 1999 0.092 516 0.092 535 0.092 535 0.092 535
0 4 0.078 1516 0.100 734 0.100 710 0.100 707 0.100 707
2 4 0.144 4160 0.149 928 0.150 057 0.150 058 0.150 058

In order to provide a more precise idea about the convergence of the expanded form,
equation (43), we show in table 1 the effect of including radial moments up to k = 6 (i.e. r12)
in the evaluation of radial integrals for R = 2.0 au. A six-digit agreement between the exact
radial integral and its series expansion is obtained only for k � 6 .

If the radial density r2σ(r) is sufficiently small for r > R, the second integral can, in
principle, be neglected in equation (43) and by extending the upper limit of the first integral
to infinity, one gets the following expansion:

W̃
sr,µ

L (n1, ζ1, n2, ζ2, R) ≈
∞∑

k=0

DL,k(µR)

RL+1
µ2kML+2k

n1,n2
(ζ1, ζ2), (44)

where ML+2k
n1,n2

(ζ1, ζ2) is the (L + 2k)-order moment of the radial charge distribution,

ML+2k
n1,n2

(ζ1, ζ2) =
∫ ∞

0
dr r2σ(n1, ζ1, n2, ζ2, r)r

L+2k. (45)

The convergence of these approximate radial integrals has been studied for the case of the
radial densities σn(r) = σ(n, n, n, n, r), described above. The radial integrals were evaluated
at two characteristic distances. The first distance, R1, is chosen such that R2

1σn(R1) = σn(1)/2,
and it corresponds to the distance where the radial density is the half of the maximum. Another
characteristic distance, R2, is chosen such that R2

2σn(R2) = 10−6, i.e. R2 is a distance where
the density begins to be negligibly small. As is shown in table 2 the expanded form of
equation (43) is very precise: with the exception of the n = 1 and L = 0, the integrals are
identical to the results of a full numerical integration of equation (42), to at least six digits. The
approximate expansion of equation (44), using the explicit radial moments, is considerably
less successful, even for large R.

5. Discussion

The main principles of two typical applications of the spherical harmonic expansion of the
screened Coulomb interaction will be outlined in the following sections.

5.1. Electrostatic potential in crystals from experimental electron densities

As it has been stressed by Marshall (2002) one possible field of application of the screened
interaction kernel concerns the calculation of the electrostatic potential in infinite periodic
systems. While the determination of the potential from theoretical charge densities is relatively
straightforward, only a few authors attempted to get converged electrostatic lattice potentials
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Table 2. Comparison of typical radial integrals, W
sr,µ
L (n, R), for products of Slater orbitals σn(r)

for two characteristic distances, R1 and R2, described in the text. The parameter µ = 0.15. Three
alternative methods, corresponding to equations (42), (43) and (44), are compared. Numbers in
parentheses indicate the powers of 10.

n L Equation (42) Equation (43) Equation (44) Equation (42) Equation (43) Equation (44)

R1 = 2.077 96 R2 = 9.892 70

1 0 0.297 398 0.297 399 0.318 454 2.187 77 (−3) 2.187 71 (−3) 2.002 52 (−3)
1 2 0.188 098 0.188 098 0.334 084 9.384 01 (−4) 9.384 01 (−4) 8.815 57 (−4)
1 4 0.113 899 0.113 899 0.580 759 1.216 69 (−4) 1.216 69 (−4) 1.182 31 (−4)

R1 = 1.709 47 R2 = 6.220 00

2 0 0.402 003 0.402 003 0.420 538 1.813 20 (−2) 1.813 20 (−2) 1.779 15 (−2)
2 2 0.262 760 0.262 760 0.375 215 4.020 72 (−3) 4.020 72 (−3) 3.994 12 (−3)
2 4 0.162 929 0.162 929 0.449 533 3.297 83 (−4) 3.297 83 (−4) 3.294 62 (−4)

R1 = 1.560 59 R2 = 4.881 98

3 0 0.459 191 0.459 192 0.475 764 3.696 20 (−2) 3.696 20 (−2) 3.664 37 (−2)
3 2 0.313 732 0.313 732 0.409 200 6.950 65 (−3) 6.950 65 (−3) 6.937 53 (−3)
3 4 0.198 914 0.198 914 0.420 133 5.506 22 (−4) 5.506 22 (−4) 5.505 49 (−4)

from experimental charge densities. According to the current standards in the field, the
experimental high-resolution (preferably low-temperature) data are fitted by some multipolar
model (Stewart 1976, Hansen and Coppens 1978, Coppens and Volkov 2004).

A general multipolar model consists in an expansion of the density in terms of atomic
charge distributions, ρ(r) = ∑

a ρa(r). An atomic distribution is composed of sum of radial
Slater functions augmented by (real) spherical harmonic angular components:

ρa(r) =
lmax∑
l=0

∑
i

l∑
m=−l

Cai
lmχai

l (ra)

=
lmax∑
l=0

∑
i

l∑
m=−l

Cai
lmRai

l (ra)Ylm(θa, φa), (46)

where the argument ra is the position vector with respect to the nuclear position of atom a,
i.e. ra = r − Ra, R

ai
l (r) is a radial function for the shell i of atom a, and Cai

lm are linear
expansion coefficients. The real spherical harmonics are given with the convention that for
l > 0 and l < 0 one has the even and odd combinations, respectively. Note that equation (46)
is mathematically equivalent with the conventional way of writing the Hansen–Coppens model
(Hansen and Coppens 1978, Coppens and Volkov 2004).

The electrostatic potential,

V (R) =
∫

cell
dr ρ(r)

(
G(R, r) − 2π

3�
r · r

)
, (47)

and the corresponding periodic Coulomb kernel, G(r, r′),

G(r, r′) =
∑
L

erfc(µ|r − r′ + L|)
|r − r′ + L| +

4π

�

∑
k �=0

e−k2/4µ2

k2
eik·(r−r′), (48)

can be obtained on the basis of the Ewald method (Makov and Payne 1995, Marshall 2002).
In the above expressions � is the unit cell volume.
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While the full lattice sum is only conditionally convergent, the two contributions, one
in the direct, the other in the reciprocal one, are both absolutely convergent by the virtue
of the complementary error function and the Gaussian factors in the two terms, respectively.
Therefore, the summation and integration can be interchanged in both components separately.

The long-range component of the periodic kernel involves a summation in the reciprocal
space over the Fourier components of the charge distribution, while the short-range component
corresponds to a summation in direct space. In the present context, we are mainly interested
in this second component. Using the spherical harmonic expansion of the short-range kernel
and the orthogonality of the spherical harmonics, the short-range direct-space contribution to
the lattice sum is∫

cell
dr ρ(r)

∑
L

erfc(µ|r − R + L|)
|r − R + L| =

∑
a

∑
i

lmax∑
l=0

l∑
m=−l

Cai
lmY ∗

lm(�,�)

×
∑
L

∫
dra r2

aRai
l (ra)Fl(|R − Ra + L|, ra, µ). (49)

The radial integral can be further simplified for most of the terms of the lattice sum. In fact,
as far as Rai

l (ra) ≈ 0, the separable series expansion of the radial part of the kernel applies,
reducing the computational overhead considerably. Further details and numerical tests of this
method will be published elsewhere.

5.2. Range-separated hybrid functionals in the PAW formalism

The implementation of the Fock exchange in a PAW (projector augmented wave) framework
(Blöchl 1994, Kresse and Joubert 1999) has been described recently (Paier et al 2005) for the
case of the full Coulomb interaction. In terms of the exchange integrals Kabba, given by

Kabba = 1

2

∫ ∫
dr1 dr2

ψ∗
a (r)ψ∗

b (r)ψb(r
′)ψa(r

′)
|r − r′| , (50)

the Fock exchange energy is K = 1
2

∑
a,b fafbKabba, where fi are the occupation numbers of

the one-electron orbitals ψa . Introducing the standard definition of the overlap density nab(r),
and its PAW decomposition,

nab(r) = 〈ψa|n̂(r)|ψb〉 = ñab(r) + n1
ab(r) − ñ1

ab(r), (51)

it can be seen that one needs three contributions to evaluate the Fock exchange energy: a pure
plane-wave one K̃ , and two involving one-centre radial integrals over atomic radial functions,
K1 and K̃1, arising from the corresponding terms in the overlap density ñab, n

1
ab and ñ1

ab,
respectively. Typical radial integrals for the full Coulomb case (cf equations (38) and (40) in
Paier et al (2005)) involve the kernel, GL(R, r). For a short-ranged Fock exchange interaction,
as employed in the HSE03 (Heyd et al 2003, Heyd and Scuseria 2004) functional for instance,
GL(R, r) has to be replaced by FL(R, r;µ) in the radial integrals:

S
L,µ

ijkl = 4π

2L + 1

∫ rc

0
dr ui(r)uj (r)

∫ rc

0
dr ′uk(r

′)ul(r
′)FL(r, r ′;µ). (52)

6. Conclusions

In the present work a spherical harmonic expansion has been derived for the screened short- and
long-range Coulomb interactions. This development takes full advantage of the orthogonality
of spherical harmonics, especially when the angular component of the basis functions is
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spherical harmonics themselves. A further series expansion in the variable r leads to a
separable expression, which can be ordered either by the rank of the angular component or by
increasing powers of r. The validity and the convergence properties of these expansions have
been studied for numerical examples, in particular by computing the electrostatic potential of
one-centre products of Slater-type atomic orbitals.

The principles of two different kinds of applications of the spherical harmonic expansion
of the screened Coulomb interaction have been briefly presented and they are subject of
ongoing work in our laboratories. We are convinced that the present formalism will find other
applications in the field of electronic structure calculation of atoms, molecules and solids, or
in problems of intermolecular forces in extended systems.
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Appendix. Explicit low-order radial functions

�0(	, ξ) = − 1

2
√

πξ	
× {(e−(ξ+	)2 − e−(ξ−	)2

)

−√
π((ξ − 	)erfc(	 − ξ) + (	 + ξ)erfc(ξ + 	))} (A.1)

�1(	, ξ) = − 1

2
√

πξ 2	2
×

{
1

2
((e−(ξ+	)2 − e−(ξ−	)2

)(2ξ 2 + 2ξ	 − (1 − 2	2))

− 4ξ	 e−(ξ+	)2

) − √
π((ξ 3 − 	3) erfc(	 − ξ) + (ξ 3 + 	3)erfc(ξ + 	))

}
(A.2)

�2(	, ξ) = − 1

2
√

πξ 3	3
×

{
1

4
((e−(ξ+	)2 − e−(ξ−	)2

)(4(ξ 4 + ξ 3	 + 	4)

− 2ξ 2(1 − 2	2) + (1 − 2ξ	)(3 − 2	2)) − 4 e−(ξ+	)2

ξ	(2ξ 2 − (3 − 2	2)))

−√
π((ξ 5 − 	5) erfc(	 − ξ) + (ξ 5 + 	5) erfc(ξ + 	))

}
. (A.3)
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